

 Navigation

 	
 index

 	
 modules |

 	configglue 1.1.2 documentation

configglue documentation

Getting help

Having trouble? We’d like to help!

	Try the FAQ – it’s got answers to many common questions.

	Looking for specific information? Try the Index, Module Index
or the detailed table of contents.

	Ask a question in the #configglue IRC channel.

	Report bugs with configglue in our ticket tracker [https://bugs.launchpad.net/configglue].

First steps

	From scratch:
Overview |
Installation |
Quickstart

The schema

	Schemas:
Schema syntax |
Option types

	Advanced:
Custom options

The configuration file

	Basic:
Syntax overview

	Advanced:
Environment variables

The command-line

	Basic:
Overview

	Advanced:
Environment variables

Applications

	Getting started:
Writing configglue-enabled applications

The configglue open-source project

	Third-party distributions:
Overview

	configglue over time:
Release notes and upgrading instructions

 Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	configglue 1.1.2 documentation

 Python Module Index

 a |
 s

 			

 		
 a	

 	[image: -]
 	
 configglue.app	

 	
 	
 configglue.app.base	
 Base class for configglue-enabled application.

 	
 	
 configglue.app.plugin	
 Base classes for plugins and plugin managers.

 			

 		
 s	

 	
 	
 configglue.schema	
 Built-in options types.

 Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	configglue 1.1.2 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | N
 | P
 | R
 | S
 | T

A

 	

 	App (class in configglue.app)

 	

 	available (PluginManager attribute)

B

 	

 	BoolOption (class in configglue.schema)

C

 	

 	configglue.app.base (module)

 	configglue.app.plugin (module)

 	

 	configglue.schema (module)

D

 	

 	default (Option attribute)

 	DictOption (class in configglue.schema)

 	

 	disable() (PluginManager method)

E

 	

 	enable() (PluginManager method)

 	

 	enabled (Plugin attribute)

 	

 	(PluginManager attribute)

F

 	

 	fatal (Option attribute)

H

 	

 	help (Option attribute)

I

 	

 	IntOption (class in configglue.schema)

 	

 	item (DictOption attribute)

 	

 	(ListOption attribute)

L

 	

 	length (TupleOption attribute)

 	ListOption (class in configglue.schema)

 	

 	load() (PluginManager method)

N

 	

 	name (App attribute)

 	

 	(Option attribute)

 	

 	null (StringOption attribute)

P

 	

 	parse_json (DictOption attribute), [1]

 	parser (App attribute)

 	Plugin (class in configglue.app)

 	

 	plugin_manager (App attribute)

 	PluginManager (class in configglue.app)

R

 	

 	raw (Option attribute)

 	register() (PluginManager method)

 	

 	remove_duplicates (ListOption attribute)

S

 	

 	schema (App attribute)

 	

 	(Plugin attribute)

 	schemas (PluginManager attribute)

 	section (Option attribute)

 	short_name (Option attribute)

 	

 	spec (DictOption attribute)

 	strict (DictOption attribute)

 	StringOption (class in configglue.schema)

T

 	

 	TupleOption (class in configglue.schema)

 Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

 intro/quickstart.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Writing your first configglue-enabled application

This is a minimalistic step-by-step guide on how to start using configglue to
manage configuration settings for your application.

Jump right in

Most of the time the code needed to make your application work with configglue
will look like the following snippet, so let’s look at it in detail:

def main(config, opts):
 # do something
 values = config.values('__main__')
 for opt in ('foo', 'bar'):
 option = config.schema.section('__main__').option(opt)
 value = values.get(opt)
 if value != option.default:
 print "%s option has been configured with value: %s" % (opt,
 value)
 else:
 print "%s option has default value: %s" % (opt, option.default)

if __name__ == '__main__':
 from configglue import schema

 # create the schema
 class MySchema(schema.Schema):
 foo = schema.IntOption()
 bar = schema.BoolOption()

 # read the configuration files
 scp = schema.SchemaConfigParser(MySchema())
 scp.read(['config.ini'])

 # support command-line integration
 op, opts, args = schema.schemaconfigglue(scp)

 # validate the config (after taking into account any command-line
 # provided options
 is_valid, reasons = scp.is_valid(report=True)
 if not is_valid:
 op.error(reasons[0])

 # run
 main(scp, opts)

Let’s start at the top.

You’ll probably have a main function that you’ll be calling to get
your application started.

def main(config, opts):
 # do something
 ...

if __name__ == '__main__':
 ...
 # run
 main(scp, opts)

So, for configglue to deliver it’s awesomeness, all the magic has to happen
before calling your main function.

The general structure is:

		Create a schema for your configuration

class MySchema(schema.Schema):
 foo = schema.IntOption()
 bar = schema.BoolOption()

		Create a parser for that schema

scp = schema.SchemaConfigParser(MySchema())

		Read the configuration files (to get the statically defined configuration
values)

scp.read(['config.ini'])

		(Optional) Weave in command-line integration support (so that configuration
options can be overridden via command-line)

op, opts, args = schema.schemaconfigglue(scp)

		(Optional) Validate the effective configuration (to capture any
configuration issues)

is_valid, reasons = scp.is_valid(report=True)
if not is_valid:
 op.error(reasons[0])

Since this code will be structured the same for any configglue-enabled project
you do, there is also a utility function you can use to avoid repeating
yourself.

When using that function (see configglue.glue.configglue()),
this code would look like:

def main(config, opts):
 # do something
 values = config.values('__main__')
 for opt in ('foo', 'bar'):
 option = config.schema.section('__main__').option(opt)
 value = values.get(opt)
 if value != option.default:
 print "%s option has been configured with value: %s" % (opt,
 value)
 else:
 print "%s option has default value: %s" % (opt, option.default)

if __name__ == '__main__':
 from configglue import schema
 from configglue.glue import configglue

 # create the schema
 class MySchema(schema.Schema):
 foo = schema.IntOption()
 bar = schema.BoolOption()

 # glue everything together
 glue = configglue(MySchema, ['config.ini'])

 # run
 main(glue.schema_parser, glue.options)

Test it

To test our configglue support, let’s try out different use cases.

		Default values

$ python app.py
foo option has default value: 0
bar option has default value: False

		Config file

Write the following content to a file called config.ini:

[__main__]
bar = true

and then run

$ python app.py
foo option has default value: 0
bar option has been configured with value: True

		Command-line integration

$ python app.py --foo=2
foo option has been configured with value: 2
bar option has been configured with value: True

Note

This output is assuming you still have the config.ini file you
created during the previous use case.

Profit!

That’s it! Your application now uses configglue to manage it’s configuration.
Congratulations!

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

intro/install.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Quick install guide

Install configglue

You’ve got three easy options to install configglue:

		Install a version of configglue provided by your operating system
distribution. This is the quickest option for those
who have operating systems that distribute configglue.

		Install an official release. This
is the best approach for users who want a stable version number and aren’t
concerned about running a slightly older version of configglue.

		Install the latest development version. This is best for users who want the
latest-and-greatest features and aren’t afraid of running brand-new code.

Always refer to the documentation that corresponds to the
version of configglue you’re using!

If you do either of the first two steps, keep an eye out for parts of the
documentation marked new in development version. That phrase flags
features that are only available in development versions of configglue, and
they likely won’t work with an official release.

Verifying

To verify that configglue can be seen by Python, type python from your shell.
Then at the Python prompt, try to import configglue:

>>> import configglue
>>> print configglue.__version__
1.0

That’s it!

That’s it – you can now move onto the quickstart guide.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

intro/whatsnext.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

What to read next

So you’ve read all the introductory material and have
decided you’d like to keep using configglue. We’ve only just scratched the
surface with this intro.

So what’s next?

Well, we’ve always been big fans of learning by doing. At this point you should
know enough to start fooling around. As you need to learn new tricks, come back
to the documentation.

We’ve put a lot of effort into making confgglue’s documentation useful, easy to
read and as complete as possible. The rest of this document explains more about
how the documentation works so that you can get the most out of it.

How the documentation is organized

configglue’s main documentation is broken up into “chunks” designed to fill
different needs:

		The introductory material is designed for people new
to configglue. It doesn’t cover anything in depth, but instead gives a
high-level overview of how developing in configglue “feels”.

		The topic guides, on the other hand, dive deep into
individual parts of configglue. There are complete guides to configglue’s
schema system,
configuration files,
command-line integration, and much more.

This is probably where you’ll want to spend most of your time; if you work
your way through these guides you should come out knowing pretty much
everything there is to know about configglue.

		We’ve written a set of how-to guides that answer
common “How do I ...?” questions. Here you’ll find information about
writing custom option types,
and more.

		The guides and how-to’s don’t cover every single class, function, and
method available in configglue – that would be overwhelming when you’re
trying to learn. Instead, details about individual classes, functions,
methods, and modules are kept in the reference. This is
where you’ll turn to find the details of a particular function or
whathaveyou.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

intro/overview.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

configglue at a glance

What is configglue?

configglue is a library that glues together Python’s optparse.OptionParser and
ConfigParser.ConfigParser, so that you don’t have to repeat yourself when you
want to export the same options to a configuration file and a command-line
interface.

The main features of configglue are:

		ini-style configuration files

		schema-based configuration

		command-line integration

		configuration validation

Why would I want to use configglue?

Some of the benefits of using configglue are that it allows you to:

		separate configuration declaration (which options are available) from
definition (what value does each option take)

		validate configuration files (there are no required options missing, prevent
typos in option names, assert each option value is of the correct type)

		use standard types out of the box (integer, string, bool, tuple, list, dict)

		use standards-compatible configuration files (standard ini-files)

		create your own custom types beyond what’s provided in the library

		easily support command-line integration

		override options locally by using several configuration files (useful for
separating configuration files for different environments)

Got curious?

You can find a quickstart guide for configglue on
Writing your first configglue-enabled application and you can get its code at
http://launchpad.net/configglue.

As an additional bonus, there is another project called
django-configglue which allows you to use all the benefits of configglue on
your Django projects. You can find a quickstart guide for django-configglue on
http://packages.python.org/django-configglue and you can get its code at
http://launchpad.net/django-configglue.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

topics/base-app.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Writing configglue-enabled applications

By inheriting from App, your application will
reap the benefits of being able to

Read configuration files from standard locations

The configglue-enabled app will automatically follow the XDG [http://www.freedesktop.org/wiki/Specifications/basedir-spec] standards for
looking up configuration files. For example, if your application is named
myapp, the following locations will be searched for configuration values:

/etc/xdg/myapp/myapp.cfg
/home/<user>/.config/myapp/myapp.cfg
./local.cfg

Support plugins for extending your application

The class Plugin will allow you to write plugins for
your application so that each plugin can have it’s own configglue-based
configuration.

Each plugin registered with the application will have it’s own schema and
configuration files, which will be included during validation. If the plugin
is named myplugin, the following additional locations will be searched for
configuration values:

/etc/xdg/myapp/myplugin.cfg
/home/<user>/.config/myapp/myplugin.cfg

Plugins need to be registered with the application manually for the time
being. For doing so, just call register(),
like:

class FooSchema(Schema):
 bar = IntOption()

class Foo(Plugin):
 enabled = True
 schema = FooSchema

myapp = App(name='myapp')
myapp.plugins.register(Foo)

This example will register a Foo plugin which will be enabled by default.

Plugins can be enabled/disabled on demand, by calling the respective method

>>> myapp.plugins.enable(Foo)
>>> print myapp.plugins.enabled
[<class 'Foo'>]

>>> myapp.plugins.disable(Foo)
>>> print myapp.plugins.enabled
[]

The list of available plugins can be retrieved like

>>> print myapp.plugins.available
[<class 'Foo'>]

Nicely integrate with the command line

By extending the App class, your program
automatically has nice command line integration support built-in.

Getting help

In order to show a help message, with information about each option your
program supports, you can invoke it like:

python myapp.py --help

and it will output something similar to

Usage: myapp.py [options]

Options:
 -h, --help show this help message and exit
 --validate validate configuration

Validating the configuration

If invoked with the –validate option, the configuration will be validated,
producing one of two possible outcomes.

If no errors are found in the configuration, there will be no output, and your
program will exit with a successful status code (0).

If errors are found during validation, those will be shown on the standard
output, and your program will exit with an error status code (1).

Customizing the supported options

If you want to customize the options your program will support in the command
line, beyond those already included by introspecting the schema, you can do so
by initializing your application with an instance of
optparse.OptionParser.

For example, imagine your application code looks like:

class MySchema(schema.Schema):
 foo = schema.IntOption()

parser = OptionParser()
parser.add_option('-b', '--bar')
app = app.App(MySchema, parser=parser)

when invoking the help you’d get

Usage: myapp.py [options]

Options:
 -h, --help show this help message and exit
 -b BAR, --bar=BAR
 --foo=FOO

Note

If you override the option parser, you will not get the default
options set. You will have to include them yourself, if so desired.

Note

In order to trigger configuration validation, the only requirement
is that the option parser includes a boolean option called validate.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

topics/environment-variables.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Environment variables

Environment variables are now supported in two flavours

Environment variables during command-line integration

If an environment variable of the form

CONFIGGLUE_FOO_BAR is defined, it will be used to override the configuration
value for option foo in section bar, according to the following precedence
rules:

		Explicitly defined via command-line (i.e, –section_option=value)

		Implicitly defined via environment variable (i.e, CONFIGGLUE_SECTION_OPTION)

		Explicitly defined via configuration files

		Implicitly defined via schema defaults

To illustrate, a few examples. Given the example from the quickstart
guide, the following examples illustrate the precedence
rules just mentioned.

Implicitly defined via schema defaults

$ python app.py
foo option has default value: 0
bar option has default value: False

Implicitly defined via environment variable (overriding schema defaults)

$ CONFIGGLUE_FOO=3 python app.py
foo option has been configured with value: 3
bar option has default value: False

Explicitly defined via command-line

$ CONFIGGLUE_FOO=3 python app.py --foo=2
foo option has been configured with value: 2
bar option has default value: False

Explicitly defined via configuration files

$ echo "[__main__]\nfoo = 5" > config.ini
$ python app.py
foo option has been configured with value: 5
bar option has default value: False

Implicitly defined via environment variable (overriding config file)

$ CONFIGGLUE_FOO=33 python app.py
foo option has been configured with value: 33
bar option has default value: False

Environment variables as placeholders in configuration files

In the configuration files, if an option has a value such as

$FOO

or

${FOO}

it will be interpolated using the FOO environment variable, or if that
variable is not defined, it will fallback to the default value for that
option. Alternatively, you can specific a default using bash-like syntax

${FOO:-default}

Using the same example as shown in the quickstart guide, this use case can be illustrated as follows.

Specifying a value in the configuration file using an environment variable

$ echo "[__main__]\nfoo = \$BAZ" > config.ini
$ BAZ=33 python app.py
foo option has been configured with value: 33

If the environment variable is not defined, fallback to the default value

$ python app.py
foo option has default value: 0

If the environment variable is not defined, use the specified default

$ echo "[__main__]\nfoo = \${BAZ:-bar}" > config.ini
$ BAZ=33 python app.py
foo option has been configured with value: 33
$ python app.py
foo option has been configured with value: bar

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

intro/index.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Getting started

New to configglue? Well, you came to the right place: read this material to
quickly get up and running.

		configglue at a glance

		Quick install guide

		Writing your first configglue-enabled application

		What to read next

See also

If you’re new to Python [http://python.org/], you might want to start by getting an idea of what
the language is like. configglue is 100% Python, so if you’ve got minimal
comfort with Python you’ll probably get a lot more out of configglue.

If you’re new to programming entirely, you might want to start with this
list of Python resources for non-programmers [http://wiki.python.org/moin/BeginnersGuide/NonProgrammers]

If you already know a few other languages and want to get up to speed with
Python quickly, we recommend Dive Into Python [http://diveintopython.org/]. If that’s not quite your
style, there are quite a few other books about Python [http://wiki.python.org/moin/PythonBooks].

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

topics/schemas.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Schemas

A schema is a static declaration of all your configuration settings. It
contains metadata about each setting so that the configuration can later
be validated.

The basics:

		Each schema is a Python class that subclasses
Schema.

		Each attribute of the schema represents either a configuration section
(see Section) or
option (see Option).

Quick example

This example schema defines the configuration for a database connection:

from configglue import schema

class DatabaseConnection(schema.Schema):
 host = schema.StringOption(
 default='localhost',
 help='Host where the database engine is listening on')
 port = schema.IntOption(
 default=5432,
 help='Port where the database engine is listening on')
 dbname = schema.StringOption(
 fatal=True,
 help='Name of the database to connect to')
 user = schema.StringOption(
 help='Username to use for the connection')
 password = schema.StringOption(
 help='Password to use fot the connection')

host, port, dbname, user and password are options of the
schema. Each option is specified as a class attribute.

Options

The most important part of a schema is the list of configuration options it
defines. Options are specified by class attributes.

Example:

class OvenSettings(schema.Schema):
 temperature = schema.IntOption()
 time = schema.IntOption()

Option types

Each option in your schema should be an instance of the appropriate
Option class.

configglue ships with a couple of built-in option types; you can find the
complete list in the schema option reference. You
can easily write your own options if configglue’s built-in ones don’t do the
trick; see Writing custom option types.

Option attributes

Each option takes a certain set of option-specific arguments (documented in
the schema option reference). For example,
ListOption (and its subclasses)
require a item argument
which specifies the type of the items contained in the list.

There’s also a set of common arguments available to all option types. All are
optional. They’re fully explained in the reference, but here’s a quick summary of the most
often-used ones:

		default

		The default value for this option, if none is provided in the config file.
Default is configglue.schema.NO_DEFAULT.

		fatal

		If True, SchemaConfigParser.parse_all() will raise an exception if no
value is provided in the configuration file for this option. Otherwise,
self.default will be used.
Default is False.

		help

		The help text describing this option. This text will be used as the
optparse.OptParser help text.
Default is ''.

Again, these are just short descriptions of the most common option attributes.
Full details can be found in the common schema option attribute reference.

Option name restrictions

configglue places only one restriction on schema option names:

A option name cannot be a Python reserved word, because that would
result in a Python syntax error. For example:

class Example(schema.Schema):
 pass = schema.IntOption() # 'pass' is a reserved word!

Custom option types

If one of the existing options cannot be used to fit your purposes, you can
create your own option class. Full coverage of creating your own options is
provided in Writing custom option types.

Schema inheritance

Schema inheritance in configglue works almost identically to the way normal
class inheritance works in Python.

Section name “hiding”

In normal Python class inheritance, it is permissible for a child class to
override any attribute from the parent class.

In order to allow easy extending of schemas, configglue overloads the standard
Python inheritance model. Whenever a schema is created, it will inherit all
its attributes from the base classes.

This poses a slight problem for attributes of type
Section. Usually, you’ll want to
extend a Section instead of
overriding it. In order to achieve this, in your schema subclass, copy the
parent’s attribute explicitely, to avoid modifying the parent schema class.
Option attributes (derived from
Option) will be overridden, as
expected.

For example:

from configglue import schema

class BaseSchema(schema.Schema):
 option1 = schema.IntOption()

 class MySection(schema.Section):
 option1 = schema.BoolOption()

class ChildSchema(BaseSchema):
 option2 = schema.IntOption()

 class MySection(BaseSchema.MySection):
 option2 = schema.IntOption()

In this example ChildSchema will have two top-level options,
option1 and option2, and one section MySection, which
will have also two options within in (MySection.option1 and
MySection.option2). So, defining ChildSchema in this way
produces the same result as explicitely describing each attribute, as
expected:

from configglue import schema

class ChildSchema(schema.Schema):
 option1 = schema.IntOption()
 option2 = schema.IntOption()

 class MySection(schema.Section):
 option1 = schema.BoolOption()
 option2 = schema.IntOption()

Multiple inheritance

Just as with Python’s subclassing, it’s possible for a configglue schema to
inherit from multiple parent schemas. Keep in mind that normal Python name
resolution rules apply.

Generally, you won’t need to inherit from multiple parents. The main use-case
where this is useful is for “mix-in” classes: adding a particular extra option
to every class that inherits the mix-in. Try to keep your inheritance
hierarchies as simple and straightforward as possible so that you won’t have
to struggle to work out where a particular piece of information is coming
from.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

topics/config-file.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Configuration files

configglue uses standard INI-style configuration files to store the values for
the configuration, in the same format supported by ConfigParser. Within a
configuration file, there a few special syntax constructs you should be aware of.

A Section is matched by a ConfigParser section, which is defined like:

[MySection]

A Option is matched by a ConfigParser option, which is defined by a
simple key, value pair, like:

my_option = the value

So, a very simple configuration file could look like:

[MySection]
my_option = the value

This configuration file would match with a schema like the following:

class MySchema(schema.Schema):
 class MySection(schema.Section):
 my_option = schema.StringOption()

Special considerations

There is always an implicitely defined section called __main__

A few special considerations have to be kept in mind while working with these
configuration files. As ConfigParser requires a config file to have at least
one section defined, any top-level Options are added to an implicitely
defined section called __main__.

Therefore, if you have a schema like:

class MySchema(schema.Schema):
 foo = IntOption()

and you want to write a configuration file to match it, it would have to look
like:

[__main__]
foo = 42

Specifying configuration values for basic data types

For any basic data types, such as strings, numbers and booleans, specifying
those in your configuration files is trivial; you just have to write them down
as key = value pairs.

Specifying more complex data

For more advanced data types, such as lists, tuples or dictionaries there are
a few syntactic conventions you should be aware of.

Tuples

For specifying the value of a TupleOption,
you just put all the values in the same line, separated by ,, as shown:

my_tuple = 1, 2, 3

This will be parsed as the tuple (1, 2, 3).

Lists

For specifying the value of a ListOption,
you just put each value on a different line, as shown:

my_list = 1
 2
 3

This will be parsed as the list [1, 2, 3].

Note

If the ListOption was initialized with
parse_json=True (the default), then an alternative syntax is available.
You can specify the list value as:

my_list = [1, 2, 3]

New in version 1.0.

Dictionaries

For specifying the value of a DictOption,
a special syntax convention was defined. The value of a
DictOption is the name of a section
describing the structure of that dictionary.

For example, given the configuration file:

my_dict = my_dict_sect

[my_dict_sect]
foo = 1
bar = true

and the schema:

class MySchema(schema.Schema):
 my_dict = schema.DictOption(
 spec={'foo': schema.IntOption(),
 'bar': schema.BoolOption()})

my_dict would be parsed as:

{'foo': 1, 'bar': True}

Note

If the DictOption was initialized with
parse_json=True (the default), then an alternative syntax is available.
You can specify the dictionary value as:

my_dict = {"foo": "1", "bar": "true"}

New in version 1.0.

Environment variables

You can also specify the value in the configuration file as an expression
involving environment variables.

For more details, refer to the documentation about
Environment variables as placeholders in configuration files.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

topics/command-line.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

The command-line

One of the nicest things about configglue is its ability to easily integrate
the command line for specifying or overriding configuration values.

In the example given in the quickstart guide, it
can be seen how the command line is used to supply the value of a
configuration option.

Top-level configuration options are matched using the simple

--option=value

syntax.

Options that are within a section will be matched using the compound

--section_option=value

syntax; therefore it’s not possible to have a section or option name contain
underscore characters, as they would clash with the command line argument name
resolution method.

Short-form names

If the Option has a non-empty
short_name set, this will be used as the
short-form name for the command line parameter. For example, given the
schema

class MySchema(schema.Schema):
 foo = IntOption(short_name='f')

the following forms of specifying a value for this option are equivalent:

--foo=1

and

-f 1

Environment variables

Environment variables can be used for overriding configuration options. For
more information, see the documentation about
Environment variables during command-line integration.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

misc/index.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Meta-documentation and miscellany

Documentation that we can’t find a more organized place for. Like that drawer in
your kitchen with the scissors, batteries, duct tape, and other junk.

		Third-party distributions of configglue
		For distributors

		API stability
		What “stable” means

		Stable APIs

		Exceptions

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

faq/install.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

FAQ: Installation

How do I get started?

		Download the code [https://launchpad.net/configglue/+download].

		Install configglue (read the installation guide).

		Walk through the quickstart guide.

		Check out the rest of the documentation, and ask questions [https://answers.launchpad.net/configglue/] if you
run into trouble.

What are configglue’s prerequisites?

configglue requires Python [http://www.python.org/], specifically any version of Python from 2.6
through 2.7. It also requires pyxdg [http://www.freedesktop.org/wiki/Software/pyxdg], for automatically finding configuration
files from standard locations, when using the provided
App base class.

Can I use Django with Python 3?

Not at the moment. Python 3.0 introduced a number of
backwards-incompatible changes to the Python language, and although
these changes are generally a good thing for Python’s future, it will
be a while before most Python software catches up and is able to run
on Python 3.0. For configglue, the transition is expected to happen
soon, so keep around!

In the meantime, Python 2.x releases will be supported and provided
with bug fixes and security updates by the Python development team, so
continuing to use a Python 2.x release during the transition should
not present any risk.

Should I use the stable version or development version?

Generally, if you’re using code in production, you should be using a
stable release. The configglue project is currently in it’s pre-1.0 stage,
so there are still issues being worked on that can break API compatiblity.
Once we reach 1.0, API backwards compatibility should be better guaranteed.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

misc/api-stability.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

API stability

The release of configglue 1.0 comes with a promise of API
stability and forwards-compatibility. In a nutshell, this means that code you
develop against configglue 1.0 will continue to work against 1.1 unchanged, and you
should need to make only minor changes for any 1.X release.

What “stable” means

In this context, stable means:

		All the public APIs – everything documented in the linked documents below,
and all methods that don’t begin with an underscore – will not be moved or
renamed without providing backwards-compatible aliases.

		If new features are added to these APIs – which is quite possible –
they will not break or change the meaning of existing methods. In other
words, “stable” does not (necessarily) mean “complete.”

		If, for some reason, an API declared stable must be removed or replaced, it
will be declared deprecated but will remain in the API for at least two
minor version releases. Warnings will be issued when the deprecated method
is called.

		We’ll only break backwards compatibility of these APIs if a bug or
security hole makes it completely unavoidable.

Stable APIs

In general, everything covered in the documentation is considered stable as
of 1.0.

Exceptions

There are a few exceptions to this stability and backwards-compatibility
promise.

Security fixes

If we become aware of a security problem we’ll do everything necessary to
fix it. This might mean breaking backwards compatibility; security trumps the
compatibility guarantee.

APIs marked as internal

Certain APIs are explicitly marked as “internal” in a couple of ways:

		Some documentation may refer to internals and mention them as such. If the
documentation says that something is internal, we reserve the right to
change it.

		Functions, methods, and other objects prefixed by a leading underscore
(_). This is the standard Python way of indicating that something is
private; if any method starts with a single _, it’s an internal API.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

misc/distributions.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Third-party distributions of configglue

Many third-party distributors are now providing versions of configglue integrated
with their package-management systems. These can make installation and upgrading
much easier for users of configglue.

Typically, these packages are based on the latest stable release of configglue, so
if you want to use the development version of configglue you’ll need to follow the
instructions for installing the development version from Launchpad.

If you’re using Linux or a Unix installation, such as OpenSolaris,
check with your distributor to see if they already package configglue. If
you’re using a Linux distro and don’t know how to find out if a package
is available, then now is a good time to learn.

Currently known distributions that ship configglue are:

		Ubuntu

all Ubuntu releases [http://packages.ubuntu.com/search?searchon=names&keywords=python-configglue], see also Ubuntu documentation [https://help.ubuntu.com/] on “Adding and Removing Software”

For distributors

If you’d like to package configglue for distribution, we’d be happy to help out!
Please join the configglue-developers mailing list [https://lists.launchpad.net/configglue/] and introduce yourself.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

faq/index.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

configglue FAQ

		FAQ: Installation
		How do I get started?

		What are configglue’s prerequisites?

		Can I use Django with Python 3?

		Should I use the stable version or development version?

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

contents.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

configglue documentation contents

		Getting started
		configglue at a glance
		What is configglue?

		Why would I want to use configglue?

		Got curious?

		Quick install guide
		Install configglue

		Verifying

		That’s it!

		Writing your first configglue-enabled application
		Jump right in

		Test it

		Profit!

		What to read next
		How the documentation is organized

		Using configglue
		How to install configglue
		Install Python

		Remove any old versions of configglue

		Install the configglue code

		Schemas
		Quick example

		Options

		Schema inheritance

		Configuration files

		Special considerations
		There is always an implicitely defined section called __main__

		Specifying configuration values for basic data types

		Specifying more complex data

		Environment variables

		The command-line
		Short-form names

		Environment variables

		Environment variables
		Environment variables during command-line integration

		Environment variables as placeholders in configuration files

		Writing configglue-enabled applications
		Read configuration files from standard locations

		Support plugins for extending your application

		Nicely integrate with the command line

		Logging

		“How-to” guides
		Writing custom option types
		Introduction

		Writing an option subclass

		configglue FAQ
		FAQ: Installation
		How do I get started?

		What are configglue’s prerequisites?

		Can I use Django with Python 3?

		Should I use the stable version or development version?

		API Reference
		Schemas
		Schema option reference

		Applications
		Application base class reference

		Plugin reference

		Meta-documentation and miscellany
		Third-party distributions of configglue
		For distributors

		API stability
		What “stable” means

		Stable APIs

		Exceptions

		Release notes
		Final releases
		1.0 release

Indices, glossary and tables

		Index

		Module Index

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

topics/logging.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Logging

configglue uses its own loggers to allow library users to define the desired
verbosity.

Existing loggers exposed by configglue are:

		configglue.parser

To enable logging you need to configure the system like

logging.dictConfig({
 'loggers': {
 'configglue.parser': {
 'handlers': ['console'],
 'level': 'WARNING',
 },
 },
 'handlers': {
 'console': {
 'formatter': 'simple',
 'class': 'logging.handlers.StreamHandler',
 'level': 'WARNING'
 'args': (sys.stdout,)
 },
 },
 'formatters': {
 'simple': {
 'format': '%(levelname)s %(message)s'
 }
 },
 })

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

_static/plus.png

topics/install.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

How to install configglue

This document will get you up and running with configglue.

Install Python

Being a Python library, configglue requires Python.

It works with any Python version from 2.6 to 2.7 (due to backwards
incompatibilities in Python 3.0, configglue does not currently work with
Python 3.0; see the configglue FAQ for more
information on supported Python versions and the 3.0 transition).

Get Python at http://www.python.org. If you’re running Linux or Mac OS X, you
probably already have it installed.

Remove any old versions of configglue

If you are upgrading your installation of configglue from a previous version,
you will need to uninstall the old configglue version before installing the
new version.

If you installed configglue using setup.py install, uninstalling
is as simple as deleting the configglue directory from your Python
site-packages.

If you installed configglue from a Python egg, remove the configglue .egg file,
and remove the reference to the egg in the file named easy-install.pth.
This file should also be located in your site-packages directory.

Where are my site-packages stored?

The location of the site-packages directory depends on the operating
system, and the location in which Python was installed. To find out your
system’s site-packages location, execute the following:

python -c "from distutils.sysconfig import get_python_lib; print get_python_lib()"

(Note that this should be run from a shell prompt, not a Python interactive
prompt.)

Install the configglue code

Installation instructions are slightly different depending on whether you’re
installing a distribution-specific package, downloading the latest official
release, or fetching the latest development version.

It’s easy, no matter which way you choose.

Installing a distribution-specific package

Check the distribution specific notes to see if your
platform/distribution provides official configglue packages/installers.
Distribution-provided packages will typically allow for automatic installation
of dependencies and easy upgrade paths.

Installing an official release

		Download the latest release from our download page [https://launchpad.net/configglue/+download].

		Untar the downloaded file (e.g. tar xzvf configglue-NNN.tar.gz,
where NNN is the version number of the latest release).
If you’re using Windows, you can download the command-line tool
bsdtar [http://gnuwin32.sourceforge.net/packages/bsdtar.htm] to do this, or you can use a GUI-based tool such as 7-zip [http://www.7-zip.org/].

		Change into the directory created in step 2 (e.g. cd configglue-NNN).

		If you’re using Linux, Mac OS X or some other flavor of Unix, enter
the command sudo python setup.py install at the shell prompt.
If you’re using Windows, start up a command shell with administrator
privileges and run the command setup.py install.

These commands will install configglue in your Python installation’s
site-packages directory.

Installing the development version

Tracking configglue development

If you decide to use the latest development version of configglue,
you’ll want to pay close attention to the changes made on trunk, until
we manage to implement a better way of notifying about changes being made.
This will help you stay on top
of any new features you might want to use, as well as any changes
you’ll need to make to your code when updating your copy of configglue.
(For stable releases, any necessary changes are documented in the
release notes.)

If you’d like to be able to update your configglue code occasionally with the
latest bug fixes and improvements, follow these instructions:

		Make sure that you have Bazaar [http://bazaar-vcs.org/] installed, and that you can run its
commands from a shell. (Enter bzr help at a shell prompt to test
this.)

		Check out configglue’s main development branch (the ‘trunk’) like so:

bzr branch lp:configglue configglue-trunk

		Next, make sure that the Python interpreter can load configglue’s code. The most
convenient way to do this is to use setuptools’ develop target.
For example, on a Unix-like system:

cd configglue-trunk
python setup.py develop

When you want to update your copy of the configglue source code, just run the
command bzr pull from within the configglue-trunk directory. When you do
this, Bazaar will automatically download any changes.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

topics/index.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Using configglue

Introductions to all the key parts of configglue you’ll need to know:

		How to install configglue

		Schemas

		Configuration files

		Special considerations

		The command-line

		Environment variables

		Writing configglue-enabled applications

		Logging

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

releases/1.0.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

configglue 1.0 release notes

Welcome to configglue 1.0!

Stability and forwards-compatibility

The release of configglue 1.0 comes with a promise of API
stability and forwards-compatibility. In a nutshell, this means that code you
develop against configglue 1.0 will continue to work against 1.1 unchanged, and you
should need to make only minor changes for any 1.X release.

See the API stability guide for full details.

Backwards-incompatible changes

configglue 1.0 has a number of backwards-incompatible changes from configglue 0.11.1. If
you have apps written against configglue 0.11.1 that you need to port, see our
detailed porting guide:

		Porting your apps from configglue 0.11.1 to 1.0

What changed in configglue 1.0

We are including here the main changes in configglue 1.0. Please refer to the
documentation as your definitive guide. Anywhere you see something like:

New in version 1.0.

You’ll know that you’re looking at something new or changed.

The major highlights of configglue 1.0 are:

Removal of deprecated features

A number of features and methods which had previously been marked as deprecated,
and which were scheduled for removal prior to the 1.0 release, are no longer
present in configglue. These include:

		the configglue.pyschema namespace was dropped in favor of
configglue. All modules under the configglue.pyschema namespace
can now be found under the configglue namespace.

		all <Foo>ConfigOption classes are now called <Foo>Option

		the ConfigOption class is now called Option

		the ConfigSection class is now called Section

Support for customizing the OptionParser

When using the configglue-enabled application base class (see
App), you can pass in a custom
optparse.OptionParser instance to be used as the base commandline
parser that configglue will extend with the options from the schema.

Note

If you provide a custom parser, you’ll need to include a boolean
option named ‘validate’ or else, config validation will not be available on
the commandline.

Support for specifying complex options using json

Certain option types, like DictOption and
ListOption now support being specified as json on
the configuration files and commandline.

For example, in order to override a DictOption
called foo on the commandline, you can do so by passing in:

--foo='{"bar": "42"}'

In order to specify the value for this option in the configuration file, you
can choose between any of the following approaches.

1. Standard syntax (pre 1.0)

[__main__]
foo = mydict

[mydict]
bar = 42

2. JSON-enabled syntax

[__main__]
foo = {"bar": "42"}

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

releases/1.0-porting-guide.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Porting your apps from configglue 0.11.1 to 1.0

configglue 1.0 breaks compatibility with 0.11.1 in some areas.

This guide will help you port 0.11.1 projects and apps to 1.0. The first part of
this document includes the common changes needed to run with 1.0.

See also

The 1.0 release notes. That document explains the new
features in 1.0 more deeply; the porting guide is more concerned with
helping you quickly update your code.

Common changes

This section describes the changes between 0.11.1 and 1.0 that most users will
need to make.

Remove pyschema from the package namespace

All the code in the configglue.pyschema namespace was moved to the
configglue namespace. Therefore, just rename all your imports that look
like

import configglue.pyschema.schema
from configglue.pyschema.schema import Schema

to

import configglue.schema
from configglue.schema import Schema

Rename options

All option classes called <Foo>ConfigOption were being deprecated in favour
of the corresponding <Foo>Option classes. The <Foo>ConfigOption
classes have now been removed, so make sure you rename them to the new names.

The same applies to the ConfigOption and ConfigSection classes, which
have been renamed to Option and Section respetively.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/minus.png

ref/index.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

API Reference

		Schemas

		Applications

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

ref/schemas/options.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Schema option reference

This document contains details about the option attributes and
option types included in configglue.

See also

If the built-in options don’t do the trick, you can easily
write your own custom schema options.

Option attributes

The following arguments are available to all option types. All are
optional.

name

		
Option.name

		

The name of the option. This will be automatically set to the name assigned to
the option in the schema definition.

raw

		
Option.raw

		

If True, variable interpolation will not be carried out for this option.

Default is False.

default

		
Option.default

		

The default value for this option, if none is provided in the config file.

Default is configglue.schema.NO_DEFAULT.

fatal

		
Option.fatal

		

If True, SchemaConfigParser.parse_all will raise an exception if no
value is provided in the configuration file for this option. Otherwise,
self.default will be used.

Default is False.

help

		
Option.help

		

The help text describing this option. This text will be used as the
optparse.OptionParser help text.

Default is ''.

section

		
Option.section

		

The Section object where this option was
defined.

Default is None.

short_name

		
Option.short_name

		

The short form name of the option. This will be used to set the short form
parameter of the optparse.OptionParser used for parsing the command line.

Option types

BoolOption

		
class BoolOption([**attributes])

		

A true/false option.

IntOption

		
class IntOption([**attributes])

		

An integer.

ListOption

		
class ListOption(item[, remove_duplicates=False, parse_json=True, **attributes])

		

A list of items.

		
ListOption.item

		Required.

List elements will be parsed as being of this type. Should be an
instance of a subclass of Option.

		
ListOption.remove_duplicates

		Optional.

If True, duplicate elements will be removed from the parsed
value.

		
DictOption.parse_json

		
New in version 1.0.

Optional.

The value for this option can be specified as a json string representing
the list.

Parsing will be attempted as if the value is a json string; if it fails,
or the json string doesn’t represent a list, the original semantics
will be applied (ie, the value is interpreted as a newline-separated
string).

If False, no attempt is made at trying to parse the value as a json
string.

StringOption

		
class StringOption([null=False, **attributes])

		

A string.

		
StringOption.null

		Optional.

If True, a value of ‘None’ will be parsed into None
instead of just leaving it as the string ‘None’.

TupleOption

		
class TupleOption([length=0, **attributes])

		

A tuple of elements.

		
TupleOption.length

		Optional.

If not 0, the tuple has to have exactly this number of elements.

DictOption

		
class DictOption([spec=None, strict=False, item=None, parse_json=True, **attributes])

		

A dictionary.

		
DictOption.spec

		Optional.

If not None, should be a dict instance, such that its values
are instances of a subclass of
Option.

		
DictOption.strict

		Optional.

If True, no keys will be allowed other than those specified
in the spec.

		
DictOption.item

		Optional.

Any not explicitly defined attributes will be parsed as being
of this type. This should be an instance of a subclass of
Option.

		
DictOption.parse_json

		
New in version 1.0.

Optional.

The value for this option can be specified as a json string representing
the dictionary.

Parsing will be attempted as if the value is a json string; if it fails,
or the json string doesn’t represent a dictionary, the original semantics
will be applied (ie, the value represents the name of a section defining
the dictionary).

If False, no attempt is made at trying to parse the value as a json
string.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

releases/index.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Release notes

Release notes for the official configglue releases. Each release note will tell you
what’s new in each version, and will also describe any backwards-incompatible
changes made in that version.

For those upgrading to a new version of configglue, you will need to check
all the backwards-incompatible changes and deprecated features for
each ‘final’ release from the one after your current configglue version,
up to and including the new version.

Final releases

1.0 release

		configglue 1.0 release notes

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

ref/app/plugin.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Plugin reference

This document contains details about the base classes provided by configglue
for writing plugins and plugin managers.

Plugin

		
class Plugin

		

This is the base class from which your plugins should inherit in order to
integrate with your configglue-enabled application.

		
Plugin.schema

		This is the schema class describing any configuration specific to your
plugin.

By default a standard Schema is used.

		
Plugin.enabled

		Whether the plugin is enabled.

By default new plugins are disabled.

PluginManager

		
class PluginManager

		

This is the base class from which any custom plugin managers should inherit.

		
PluginManager.available

		The list of currently available plugin classes.

		
PluginManager.enabled

		The list of currently enabled plugin classes.

		
PluginManager.schemas

		The list of schemas for the currently enabled plugins.

		
PluginManager.enable(plugin)

		Enable the plugin.

plugin is the plugin class.

		
PluginManager.disable(plugin)

		Disable the plugin.

plugin is the plugin class.

		
PluginManager.register(plugin)

		Register the plugin by adding it to the list of available plugins.

plugin is the plugin class.

		
PluginManager.load()

		Load plugins.

Return the list of classes for the loaded plugins.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

ref/app/index.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Applications

Application API reference. For introductory material, see
Writing configglue-enabled applications.

		Application base class reference

		Plugin reference

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

ref/schemas/index.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Schemas

Schema API reference. For introductory material, see Schemas.

		Schema option reference

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

ref/app/base.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Application base class reference

This document contains details about the base class provided by configglue
for writing configglue-enabled applications.

App

		
class App([schema=None, plugin_manager=None, name=None, parser=None])

		

This is the base class from which your application should inherit in order to
easily integrate itself with configglue.

More details about what kind of benefits this provides are depicted in the
introduction to
writing configglue-enabled applications.

		
App.schema

		Optional.

This is the schema class for the application. This schema should describe
application-wide configuration.

The schema can also be specified as a class attribute of subclasses of
App.

		
App.plugin_manager

		Optional.

This is the class used to manage plugins. Should be an subclass of
PluginManager.

The default PluginManager will be used if
none is specified.

The plugin manager can also be specified as a class attribute of subclasses of
App.

		
App.name

		Optional.

The name of the application. This value will be used to determine where to
look for configuration files.

If none is provided, the application will take the name of the script used
to invoke it from the command line.

		
App.parser

		
New in version 1.0.

Optional.

If provided, it will be used as the parser for commandline options to
be extended by configglue.

Note

The custom parser is responsible for providing a ‘validate’ option,
or else validation will not be available on the commandline.

By default a optparse.OptionParser instance will be created with an
option named ‘validate’ to allow triggering configuration validation.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

howto/custom-schema-options.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

Writing custom option types

Introduction

The schema reference documentation explains how to
use configglue’s standard option classes –
BoolOption,
IntOption, etc. For many purposes,
those classes are all you’ll need. Sometimes, though, the configglue version
won’t meet your precise requirements, or you’ll want to use a option that is
entirely different from those shipped with configglue.

configglue’s built-in option types don’t cover every possible data type –
only the common types, such as bool and int. For more obscure data
types, such as complex numbers or even user-created types you can define your
own configglue Option subclasses.

Writing an option subclass

When planning your Option subclass,
first give some thought to which existing
Option class your new option
is most similar to. Can you subclass an existing configglue option and save
yourself some work? If not, you should subclass the
Option class, from which everything
is descended.

Initializing your new option is a matter of separating out any arguments that are
specific to your case from the common arguments and passing the latter to the
__init__() method of
Option (or your parent class).

In our example, we’ll call our option UpperCaseDictOption. (It’s a
good idea to call your Option
subclass <Something>Option, so it’s easily identifiable as a
Option subclass.) It behaves
mostly like a DictOption, so we’ll
subclass from that:

from configglue import schema

class UpperCaseDictOption(schema.DictOption):
 """ A DictOption with all upper-case keys. """

 def parse(self, section, parser=None, raw=False):
 parsed = super(UpperCaseDictOption, self).parse(
 section, parser, raw)
 result = {}
 for k, v in parsed.items():
 result[k.upper()] = v
 return result

Our UpperCaseDictOption will represent a dictionary with all-uppercase
keys.

So, let’s assume we have a configuration file (see documentation on
configuration files for details) that includes:

[__main__]
mydict = mydict_section

[mydict_section]
foo = 1
bar = 2

and a schema like:

class MySchema(schema.Schema):
 mydict = UpperCaseDictOption()

When parsing this configuration file, the parser will contain the following
value for the mydict attribute:

{'FOO': '1', 'BAR': '2'}

Note

Note that the dictionary values are strings because we didn’t specify an
item type for the UpperCaseDictOption, and so it defaulted
to StringOption.

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

howto/index.html

 Navigation

 		
 index

 		
 modules |

 		configglue 1.1.2 documentation »

“How-to” guides

Here you’ll find short answers to “How do I....?” types of questions. These
how-to guides don’t cover topics in depth – you’ll find that material in the
Using configglue and the API Reference. However, these guides will help
you quickly accomplish common tasks.

		Writing custom option types

 © Copyright Ricardo Kirkner, John R. Lenton.
 Created using Sphinx 1.2.2.

